MODULE DESCRIPTION FORM

نموذج وصف المادة الدراسية

Module Information معلومات المادة الدراسية							
Module Title	Engineering Drawin		g	Modu	Ile Delivery		
Module Type	Ba	sic learning activities	5		□ Theory		
Module Code	BCE126			□ Lecture			
ECTS Credits	3						
SWL (hr/sem)	75				Practical Seminar		
Module Level		1	Semester o	of Delivery 2		2	
Administering Department		BCE	College	Type College Code			
Module Leader	Ameel Mohammed Al-Mayah		e-mail	drameel@kecbu.uobaghdad.edu.iq			
Module Leader's	Acad. Title	Lect.	Module Lea	Leader's Qualification Ph.D.		Ph.D.	
Module Tutor	Zahraa Hameed Mohammed Mohammed Bassil		e-mail	zhraahameed@kecbu.uobaghdad.edu.iq mohammed.b@kecbu.uobaghdad.edu.iq			
Peer Reviewer Name			e-mail	E-mail			
Scientific Committee Approval Date			Version Nu	mber	1.0		

Relation with other Modules				
العلاقة مع المواد الدراسية الأخرى				
Prerequisite module	None	Semester		
Co-requisites module	None	Semester		

Modu	le Aims, Learning Outcomes and Indicative Contents
	أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية
Module Objectives أهداف المادة الدراسية	 To develop proficiency in using AutoCAD software for creating, editing, and managing 2D engineering drawings. To familiarize students with the features and tools of AutoCAD Plant 3D software for creating Piping and Instrumentation Diagrams (P&IDs) specific to biochemical engineering. To understand and apply engineering drawing standards, conventions, and best practices in the context of biochemical engineering projects. To enable students to create accurate and detailed engineering drawings of equipment and components used in biochemical engineering processes. To provide hands-on experience in creating plant layouts and equipment arrangements considering safety, efficiency, and regulatory requirements in biochemical engineering. To introduce students to the symbols, notations, and annotations commonly used in P&IDs for representing equipment, instrumentation, and piping components in biochemical engineering. To incorporate instrumentation, control valves, and piping specifications into P&IDs to accurately represent process control and instrumentation in biochemical engineering systems. To emphasize the importance of accuracy, clarity, and organization in engineering drawings for effective communication and collaboration in biochemical engineering projects. To enhance critical thinking and problem-solving skills by analyzing existing engineering drawings, identifying issues, and proposing appropriate solutions. To promote teamwork and collaboration through group projects involving data exchange, version control, and project management using engineering drawing software. To cultivate an understanding of the significance of engineering drawings in the design, implementation, and documentation of biochemical engineering processes and systems.
Module Learning Outcomes مخرجات التعلم للمادة الدراسية	 Demonstrate proficiency in using AutoCAD softare for creating, modifying, and managing 2D biochemical engineering drawings. Utilize AutoCAD Plant 3D software to develop Piping and Instrumentation Diagrams (P&IDs) for biochemical engineering processes and systems. Apply engineering drawing standards, conventions, and best practices to create accurate and professional engineering drawings. Generate equipment drawings, distillation columns, including pumps, reactors, and heat-exchangers, considering safety considerations and regulations in Biochemical Engineering.

	5. Create plant layouts and equipment arrangements that optimize process flow
	and adhere to industry standards in Biochemical Engineering.
	6. Interpret and utilize symbols, conventions, and notations used in P&IDs to
	represent various equipment, instrumentation, and piping components.
	7. Incorporate instrumentation, control valves, and piping specifications into
	P&IDs to accurately represent the process control and instrumentation in
	biochemical engineering systems.
	8. Develop 3D models of equipment and piping systems using AutoCAD Plant 3D
	for visualization and analysis purposes.
	9. Demonstrate effective documentation and organization skills for engineering
	drawings and project files related to biochemical engineering processes.
	10. Apply critical thinking and problem-solving skills to analyze and interpret
	existing engineering drawings, identify potential issues, and propose
	appropriate solutions.
	11. Collaborate effectively with team members in engineering drawing projects,
	including data exchange, version control, and project management.
	12. Understand the importance of accuracy, clarity, and compliance in engineering
	drawings for effective communication and efficient implementation in
	biochemical engineering projects.
	The Indiantine Contents include the following terrise.
	The indicative contents include the following topics:
	Induction to Engine and Decision
	Introduction to Engineering Drawing:
	Importance and principles of engineering drawing
	Standards and conventions in engineering drawing
	Different types of drawings and their applications in Biochemical Engineering
	Introduction to AutoCAD:
	Overview of AutoCAD software and its interface
	Basic commands and functions in AutoCAD
	Creating and modifying 2D drawings in AutoCAD
Indicative Contents	
معادية بالمعادية	Advanced AutoCAD Techniques:
المحتويات الإرشادية	Creating and managing layers, linetypes, and hatch patterns
	Dimensioning and text annotation in AutoCAD
	Plotting and printing drawings in AutoCAD
	Introduction to AutoCAD Plant 3D:
	Overview of AutoCAD Plant 3D software and its features
	User interface and navigation in AutoCAD Plant 3D
	Creating and modifying P&ID diagrams using AutoCAD Plant 3D
	Equipment Drawings and Plant Layouts:
	• Creating equipment drawings such as pumps, reactors, and heat exchangers
	Developing plant layouts and equipment arrangement in Biochemical Engineering

Incorporating safety considerations and regulations in equipment drawings
Bining and Instrumentation Diagrams (B&IDs):
- Understanding the symbols and conventions used in D2/D2
Orderstanding the symbols and conventions used in P&iDs
Creating P&IDs for various processes and systems in Biochemical Engineering
 Incorporating instrumentation, control valves, and piping specifications in P&IDs
3D Modeling and Visualization:
 Introduction to 3D modeling concepts and techniques
• Creating 3D models of equipment and piping systems using AutoCAD Plant 3D
 Rendering and visualizing 3D models for presentation and analysis purposes
Project Documentation and Collaboration:
 Documenting and organizing engineering drawings and project files
 Collaborative workflows and data exchange between AutoCAD Plant 3D
 Version control and project management in engineering drawing projects
Industry Standards and Best Practices:
Familiarization with industry-specific standards and codes for engineering drawing
 Adhering to best practices in Biochemical Engineering drawing and design
 Ensuring accuracy, clarity, and compliance in engineering drawings
Prestical Applications and Case Studies
Practical Applications and case studies:
 Applying engineering drawing principles and software tools to solve real-world engineering problems in Biochemical Engineering
• Analyzing and demonstrating real plant drawings and P&IDs in the context of
Biochemical Engineering processes
Case studies highlighting the importance of accurate and well-designed
engineering drawings in Biochemical Engineering projects

	Learning and Teaching Strategies استراتيجيات التعلم والتعليم
	• Lecture-Based Learning: The course can begin with lecture-based sessions to introduce fundamental concepts and principles of engineering drawing, AutoCAD Plant 3D. Lectures can provide theoretical knowledge, demonstrations of software usage, and discussions on best practices in biochemical engineering.
	• Hands-on Practice: Hands-on practice is essential for developing proficiency in using AutoCAD Plant 3D. Students should have regular access to computer labs equipped with the necessary software. Lab sessions should be dedicated to practical exercises and projects, allowing students to apply the learned concepts, create drawings, and solve real-world engineering problems in biochemical engineering.
	• Collaborative Learning: Encourage collaborative learning by assigning group projects or activities that require teamwork. This promotes effective communication, problem-solving, and sharing of ideas among students. Group work can involve designing equipment layouts, creating 3D models, or developing comprehensive plant drawings in biochemical engineering using AutoCAD Plant 3D.
Strategies	• Case Studies and Real-Life Examples: Integrate case studies and real-life examples from the field of Biochemical Engineering to illustrate the practical application of engineering drawing techniques. Analyze existing plant layouts, P&IDs, and equipment designs to identify strengths and areas for improvement. This approach helps students develop a deeper understanding of how engineering drawing is utilized in real-world scenarios.
	• Continuous Assessment: Implement continuous assessment methods such as quizzes, assignments, homeworks, classworks, and practical evaluations to monitor students' progress throughout the course. Assessments should cover both theoretical knowledge and practical skills in using AutoCAD Plant 3D. Provide timely feedback to students to help them identify areas for improvement and reinforce their learning.
	• Resources and References: Provide biochemical students with relevant textbooks, online resources, tutorials, and documentation for AutoCAD Plant 3D. Encourage self-study and exploration of additional features and functionalities of the software tools. This empowers students to expand their knowledge and enhance their proficiency beyond the scope of the course.
	• Classroom Discussions and Q&A Sessions: Foster classroom discussions to address biochemical student questions, clarify doubts, and encourage critical thinking. Q&A sessions can also serve as an opportunity for students to share their

experiences, challenges, and innovative approaches they discovered while working on projects.
• Capstone Project: Allocate time for a capstone project where students can apply their cumulative knowledge and skills acquired throughout the course. The project can involve designing a complete biochemical plant layout, including P&IDs, equipment drawings, and 3D models. This project allows biochemical students to showcase their abilities and creativity in utilizing AutoCAD 3D Plant.

Student Workload (SWL) الحمل الدراسي للطالب محسوب لـ 15 اسبوعا			
Structured SWL (h/sem) الحمل الدراسي المنتظم للطالب خلال الفصل	48	Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا	3
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	27	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	2
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل		75	

Module Evaluation						
تقييم المادة الدراسية						
		Time/Number Weight (Marks)		Week Due	Relevant Learning	
					Outcome	
	Quizzos	2h/2	10% (10)	4 9 and 12	LO #1, - #7, #10, and	
	Quizzes	211/3	10% (10)	4, o anu 13	#12	
Formativo				2, 4, 6, 8,	10 #1 #2 and #5 #7	
assessment	Assignments	3h/6	10% (10)	10, 12, and	LO #1, #3 and #3, #7,	
				14	#9-#12	
	Projects / Lab.	3h/4	10% (10)	Continuous	All	
	Report	0	-	-	-	
Summative	Midterm Exam	2h/2	20% (10)	6 and 12	All	
assessment	Final Exam	3h/1	50% (50)	16	All	
Total assessment			100% (100 Marks)			

Delivery Plan (Weekly Syllabus)					
المنهاج الاسبوعي النظري					
	Material Covered				
	Introduction to Engineering Drawing				
Week 1	Overview of engineering drawing and its importance in Biochemical Engineering				
	Introduction to AutoCAD Plant 3D software and its interface				
	Basic Drawing Techniques				
Wook 2	Understanding drawing tools and commands in AutoCAD				
WEEK Z	• Drawing basic shapes, lines, and curves				
	• Applying layers, colors, and linetypes to drawings				
	Basic Drawing Techniques				
Wook 2	• Understanding drawing tools and commands in AutoCAD				
Week 5	• Drawing basic shapes, lines, and curves				
	Applying layers, colors, and linetypes to drawings				
	Orthographic Projection				
Week 4	Principles of orthographic projection in Biochemical Engineering				
	Drawing orthographic projections of simple objects in AutoCAD				
	Orthographic Projection				
Week 5	Principles of orthographic projection in Biochemical Engineering				
	Drawing orthographic projections of simple objects in AutoCAD				
	Isometric Projection				
Week 6	Introduction to isometric projection and its application in Biochemical Engineering				
	Creating isometric drawings in AutoCAD				
	Isometric Projection				
Week 7	Introduction to isometric projection and its application in Biochemical Engineering				
	Creating isometric drawings in AutoCAD				
	Piping and Instrumentation Diagrams (P&IDs)				
Week 8	 Introduction to P&IDs in Biochemical Engineering Understanding P&ID symbols and their meanings 				
	Creating P&IDs using AutoCAD Plant 3D software				
	Piping and Instrumentation Diagrams (P&IDs)				
Week 9	 Introduction to P&IDs in Biochemical Engineering Understanding P&ID symbols and their meanings 				
	Creating P&IDs using AutoCAD Plant 3D software				
	Equipment and Plant Layout Design				
Week 10	Designing equipment layouts for biochemical processes				
	• Creating 2D and 3D models of equipment using AutoCAD Plant 3D				
	Incorporating P&IDs into the equipment layout				

	Equipment and Plant Layout Design				
Week 11	Designing equipment layouts for biochemical processes				
	 Creating 2D and 3D models of equipment using AutoCAD Plant 3D 				
	• Incorporating P&IDs into the equipment layout				
	Assembly Drawings				
Week 12	• Creating detailed assembly drawings of biochemical equipment and components				
	• Adding dimensions, annotations, and labels to assembly drawings				
	Assembly Drawings				
Week 13	• Creating detailed assembly drawings of biochemical equipment and components				
	• Adding dimensions, annotations, and labels to assembly drawings				
	Project Work and Review				
	• Students work on a final project that integrates the skills and knowledge acquired throughout				
Week 14	the course				
	Review and assessment of the students' project work using AutoCAD Plant 3D				
	Presentations of the final projects and feedback				
	Project Work and Review				
	• Students work on a final project that integrates the skills and knowledge acquired throughout				
Week 15	the course				
	• Review and assessment of the students' project work using AutoCAD Plant 3D				
	• Presentations of the final projects and feedback				
Week 16	Preparatory week before the final Exam				

Delivery Plan (Weekly Lab. Syllabus)				
المنهاج الاسبوعي للمختبر				
	Material Covered			
	Lab 1:			
Wook 1	Introduction to AutoCAD Plant 3D			
WEEKI	Overview of the course and lab expectations			
	Familiarization with the software interface and basic commands			
	Lab 2:			
	Basic drawing techniques in AutoCAD Plant 3D			
Week 2	Drawing simple shapes and lines			
	Applying layers and colors to drawings			
	Lab 3:			
Week 3	Introduction to P&IDs in Biochemical Engineering			
	Understanding P&ID symbols and their usage			

	Creating P&ID drawings using AutoCAD Plant 3D				
	Lab 4:				
Week 4	Orthographic projection principles				
	Drawing orthographic projections of simple objects in AutoCAD Plant 3D				
	Lab 5:				
Week 5	Isometric projection principles				
	Creating isometric drawings in AutoCAD				
	Lab 6:				
Week 6	Designing equipment layouts for biochemical processes				
	Creating 2D equipment layout drawings in AutoCAD Plant 3D				
Week 7	Lab 7:				
	Introduction to 3D modeling in AutoCAD Plant 3D				
	Creating 3D models of equipment and components				
	Lab 8:				
Week 8	Incorporating P&IDs into the equipment layout				
	Integrating 2D and 3D drawings in AutoCAD Plant 3D				
	Lab 9:				
Week 9	Creating assembly drawings of biochemical equipment				
	Adding dimensions and annotations to assembly drawings				
	Lab 10:				
Week 10	Project work and review session				
	Students work on a mini-project applying the skills learned so far				
	Lab 11:				
Week 11	Advanced drawing techniques in AutoCAD Plant 3D				
	Exploring advanced commands and tools for more complex drawing				
Week 12	Lab 12:				
	3D modeling of plant layouts using AutoCAD Plant 3D				
	Creating 3D models of complete biochemical plants				
Week 13	Lab 13:				
	Generating detailed reports and documentation from P&ID drawings				
	Creating Bill of Materials (BOM) and other relevant documentation				
Week 14	Lab 14:				
	Project work and review session				

	Students continue working on their main project and receive feedback			
	Lab 15:			
Week 15	Final project presentation and assessment			
	Presenting the main project to the class and receiving evaluations			

Learning and Teaching Resources							
مصادر التعلم والتدريس							
	Text	Available in the Library?					
	AutoCAD Plant 3D 2023 for Designers, 7th Edition by Prof. Sham Tickoo Purdue Univ. and CADCIM						
Required Texts	Technologies (Author)	Yes					
	https://www.amazon.com/AutoCAD-Plant-2023- Designers-7th/dp/1640571558						
Recommended	الرسم الهندسي، عبد الرسول الخفاف بغداد 1990.	No					
Texts							
Websites							

Grading Scheme مخطط الدرجات							
Group	Grade	التقدير	Marks %	Definition			
Success Group	A - Excellent	امتياز	90 - 100	Outstanding Performance			
	B - Very Good	جيد جدا	80 - 89	Above average with some errors			
	C - Good	جيد	70 - 79	Sound work with notable errors			
(50 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings			
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria			
Fail Group (0 – 49)	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded			
	F – Fail	راسب	(0-44)	Considerable amount of work required			

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.