MODULE DESCRIPTION FORM

نموذج وصف المادة الدراسية

Module Information معلومات المادة الدراسية						
Module Title	Chemical Engineering Principles		nciples II	[Mod	lule Delivery	
Module Type	Core				🛛 Theory	
Module Code	BCE127				☐ Lecture ☐ Lab	
ECTS Credits		5 Interial				
SWL (hr/sem)	125					
Module Level 1		1	Semester	er of Delivery 2		2
Administering Department Type Dept. Code		Type Dept. Code	College	Type College Code		
Module Leader	Prof Dr. Alaa Ka	areem Mohammed	e-mail	dr.alaa(dr.alaa@kecbu.uobaghdad.edu.iq	
Module Leader's Acad. Title Prof		Professor	Module L	eader's Qualification Ph.D.		Ph.D.
Module Tutor	Israa M, Rashid		e-mail	israa_msc2018@kecbu.uobaghdad.edu.ic		obaghdad.edu.iq
Peer Reviewer Name		Name	e-mail	E-mail		
Scientific Committee Approval Date			Version N	lumber	1.0	

Relation with other Modules					
العلاقة مع المواد الدراسية الأخرى					
Prerequisite module	None	Semester			
Co-requisites module	None	Semester			

Modu	le Aims, Learning Outcomes and Indicative Contents
	أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية
Module Objectives أهداف المادة الدراسية	 To provide a clear understanding of energy balance principles and their importance in chemical engineering. To apply the first law of thermodynamics to chemical systems and understand that energy cannot be created or destroyed, only converted from one form to another. To calculate changes in enthalpy for chemical reactions and use these values in energy balance calculations. To perform energy balance calculations on closed systems, where no mass transfer occurs. To consider the energy associated with mass flow rates, such as enthalpy changes due to fluid mixing or phase changes. To work on case studies or projects to develop their problem-solving skills and apply energy balance principles to engineering design and process optimization.
Module Learning Outcomes مخرجات التعلم للمادة الدراسية	 Understand the concept of energy balance in chemical engineering Define energy balance and its significance in chemical processes. Identify the different forms of energy involved in chemical engineering systems. Apply energy balance equations to chemical engineering systems. Develop and manipulate material and energy balance equations. Develop and manipulate material and energy balance equations. Apply critical thinking skills to identify and resolve energy-related challenges in chemical engineering systems. Collaborate with multidisciplinary teams to address energy-related issues in chemical engineering projects. Skills in solving problems.
Indicative Contents المحتويات الإرشادية	 Part A - Energy Balance Equations Types of Energy: Identifying and quantifying different forms of energy involved in a system, including heat, work, potential energy, kinetic energy, and internal energy. [20 hr] Converting between different energy units, such as joules (J), kilojoules (kJ), calories (cal), kilocalories (kcal), British thermal units (BTU), and kilowatt-hours (kWh). [10 hr]. Developing and applying energy balance equations to determine the energy inputs, outputs, and transfers within a system. This involves accounting for heat transfer, work done, and changes in internal energy. [25 hr] Revision problem classes [6 hrs].

Part B – Enthalpy and Heat Capacity
 Utilizing enthalpy values and heat capacities to quantify the energy changes associated with temperature variations in a system. [30 hr] Incorporating the energy changes associated with chemical reactions, such as heat of reaction or heat of formation, into the energy balance calculations. [23 hr].
 Accounting for energy changes during phase transitions, such as vaporization or condensation, and incorporating latent heat values into the energy balance equations. [30 hr] Revision problem classes [6 hrs].

Learning and Teaching Strategies استراتيجيات التعلم والتعليم Chemical Engineering Principles is a field of engineering that applies principles of chemistry, physics, and mathematics to design, develop, and optimize processes that convert raw materials into useful products, while ensuring safety, cost-effectiveness, and sustainability. It involves the design and operation of chemical plants and equipment, as well as the development and improvement of processes for making chemicals, fuels, and materials. In summary, Chemical Engineering Principles is a multifaceted field that involves the application of engineering principles to the design and development of processes and products that have a wide range of applications in various industries like energy, pharmaceuticals, food processing, and many others.						
Imministration of the second stateStrategiesChemical Engineering Principles is a field of engineering that applies principles of chemistry, physics, and mathematics to design, develop, and optimize processes that convert raw materials into useful products, while ensuring safety, cost-effectiveness, and sustainability. It involves the design and operation of chemical plants and equipment, as well as the development and improvement of processes for making chemicals, fuels, and materials. In summary, Chemical Engineering Principles is a multifaceted field that involves the application of engineering principles to the design and development of processes and products that have a wide range of applications in various industries like energy, pharmaceuticals, food processing, and many others.	Learning and Teaching Strategies					
StrategiesChemical Engineering Principles is a field of engineering that applies principles of chemistry, physics, and mathematics to design, develop, and optimize processes that convert raw materials into useful products, while ensuring safety, cost-effectiveness, and sustainability. It involves the design and operation of chemical plants and equipment, as well as the development and improvement of processes for making chemicals, fuels, and materials. In summary, Chemical Engineering Principles is a multifaceted field that involves the application of engineering principles to the design and development of processes and products that have a wide range of applications in various industries like energy, pharmaceuticals, food processing, and many others.		استراتيجيات التعلم والتعليم				
	Strategies	Chemical Engineering Principles is a field of engineering that applies principles of chemistry, physics, and mathematics to design, develop, and optimize processes that convert raw materials into useful products, while ensuring safety, cost-effectiveness, and sustainability. It involves the design and operation of chemical plants and equipment, as well as the development and improvement of processes for making chemicals, fuels, and materials. In summary, Chemical Engineering Principles is a multifaceted field that involves the application of engineering principles to the design and development of processes and products that have a wide range of applications in various industries like energy, pharmaceuticals, food processing, and many others.				

Student Workload (SWL) الحمل الدراسي للطالب محسوب لـ ١٥ اسبوعا				
Structured SWL (h/sem)Structured SWL (h/w)5الحمل الدراسي المنتظم للطالب أسبوعياالحمل الدراسي المنتظم للطالب خلال الفصل				
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	47	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	3	
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل		125		

Module Evaluation							
تقييم المادة الدراسية							
Time/Number			Weight (Marks) Week Due		Relevant Learning		
					Outcome		
	Ομίτζος	2br(total)/6	25% (25)	3,5,7,9,10and	LO #1 #2 and #5		
	Quizzes	2111(10101)/0	2370 (23)	12			
Formative	Assignments	Shr (total)/5	15% (15)	2,4,6,8 and	10 #2 #1 and #9		
assessment	Assignments		1370 (13)	13	LO #3, #4 and #5		
	Projects / Lab.	-	-	-	-		
	Report	-	-	-	-		
Summative	Midterm Exam	2hr/2	10% (10)	7	LO #1 - #3		
assessment	Final Exam	3hr/1	50% (50)	16	All		
Total assessment			100% (100 Marks)				

Delivery Plan (Weekly Syllabus)				
المنهاج الاسبوعي النظري				
	Material Covered			
Week 1	Concepts and units			
Week 2	Heat capacity			
Week 3	Calculation of enthalpy changes			
Week 4	The General Energy Balance			
Week 5	Reversible Processes and Mechanical Energy Balance			
Week 6	Energy balances without chemical reaction			
Week 7	Energy balances without chemical reaction			
Week 8	Energy balances with chemical reaction			
Week 9	Energy balances with chemical reaction			
Week 10	Heat of solution and mixing			
Week 11	Heat of solution and mixing			
Week 12	Humidity charts and their uses			
Week 13	Humidity charts and their uses			

Week 14	Unsteady state material and emery balance
Week 15	Unsteady state material and emery balance
Week 16	Preparatory week before the final Exam

Learning and Teaching Resources مصادر التعلم والتدريس				
	Text	Available in the Library?		
Required Texts	"Basic Principles and calculations Engineering".5 th edition By David M. Himmelblau	Yes		
Recommended Texts	"Chemical Process Calculations" by D.C. Sikdar,2013	yes		
Websites	https://visimix.com/what-is-chemical-process-calculation/	·		

Grading Scheme مخطط الدرجات					
Group Grade التقدير Marks % Definition				Definition	
	A - Excellent	امتياز	90 - 100	Outstanding Performance	
Success Group (50 - 100)	B - Very Good	جيد جدا	80 - 89	Above average with some errors	
	C - Good	جيد	70 - 79	Sound work with notable errors	
	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings	
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria	
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded	
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required	

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.