Republic of Iraq
Ministry of Higher Education & Scientific Research
Supervision and Scientific Evaluation Directorate
Quality Assurance and Academic Accreditation
International Accreditation Dept.

Academic Program Specification Form For The Academic Year 2021

University: University of Baghdad

College: AlKhwarizmi College of Engineering

Number Of Departments In The College: Five Departments

Date Of Form Completion:

Dean's Name

Dean's Assistant For

Scientific Affairs

Date: / / 2021

Date: / / 2021

Signature

Dean's Assistant For

Scientific Affairs

And University Performance

Manager

Date: / / 2021

Signature

Signature

Quality Assurance And University Performance Manager

Date: / / 2021

Signature

TEMPLATE FOR PROGRAM SPECIFICATION

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAM REVIEW

PROGRAM SPECIFICATION

This Program Specification provides a concise summary of the main features of the program and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It is supported by a specification for each course that contributes to the program.

1. Teaching Institution	University of Baghdad / Alkhwarizmi College of Engineering
2. University Department/Centre	Biomedical Engineering Department
3. Program Title	B.Sc. Biomedical Engineering
4. Title of Final Award	B.Sc. Biomedical Engineering
5. Modes of Attendance offered	Full Time
6. Accreditation	ABET
7. Other external influences	None
8. Date of production/revision of this specification	2021
9. Aims of the Program	

This program aims to support the health sector in the country with specialized engineers who are needed to improve methods for the medical care patients and the fruitful usage of engineering in the field of medicine.

The program is dedicated to preparing the graduated engineers for the professional employment in areas such as the medical device industry, engineering consulting, biomechanics, biomedical imaging and signal processing, and biotechnology.

The professional Biomedical Engineer requires a sound knowledge of the engineering principles and other skills of engineering science in parallel with their application in the biomedical field. These engineering skills include modeling of systems, mechanical analysis, electrical and electronic circuits, medical imaging, biomaterials and biomechanics. These skills will be brought together in the design projects through the degree and in the penultimate year group project and final year project. The Biomedical Engineering degree will allow the graduate to progress into a career in biomedical engineering or engineering or into the research field based on the knowledge developed throughout the degree. Furthermore the graduate will be equipped to develop their skills through continued personal development.

10. Learning Outcomes, Teaching, Learning and Assessment Methods

- A. Knowledge and Understanding Graduates will be able to:
- A1. Use their knowledge and understanding of the appropriate mathematical, scientific and computational tools that underpin Biomedical Engineering, to solve, in depth, analytical, design or theoretical problems in the field of Biomedical Engineering;
- A2. Apply their knowledge and understanding of physical and biological laws, mathematics and numerical analysis in order to model Biomedical Engineering and similar systems;
- A3. Draw on materials from a range of courses and wider reading in Biomedical Engineering principles and in Mechanical, Electrical and Biomedical Engineering and the Biological Sciences in order to solve problems in Biomedical Engineering including demonstrating depth and breadth to their learning;
- A4. Explain the role of Biomedical Engineers in society and the constraints within which their engineering judgment will be exercised.
 - B. Subject-specific skills
- B1. Plan and execute safely a series of experiments in both the engineering and biomedical context;
- B2. Design, from requirement, market need or specification, a biomedical engineering device implant or system, up to the preliminary design stage, and present this design via a series of poster, written and oral presentations from both group and individual work;

- B3. Use laboratory and workshop equipment to generate data, including both engineering and physiological measurements, with appropriate rigor;
- B4. Prepare technical drawings and technical reports;
- B5. Write computer programs and use computational tools and packages, selecting the appropriate "state of the art" tools to solve Biomedical Engineering problems.

Teaching and Learning Methods

Staff involved in the degree program utilize a wide range of teaching methods that they deem the most appropriate for a particular course. These include:

- Lectures where the students write information presented to them via slide show, overhead or written by the lecturer;
- Lectures where the students have some printed notes/handouts and may annotate, or expand these during a spoken lecture;
- Lecture material placed on web-pages or other e-learning environment;
- Small group and large group tutorial sessions;
- Question and answer sessions during lectures or staff Office Hours;
- Laboratory sessions.

Assessment methods

Assessment Methods to be used are:

- Written examinations (Summative assessment);
- Oral presentations of individual and group work;
- Individual written project report(s) of both individual and group projects;
- Homework;
- Take home exams;
- Practical skills will be assessed through laboratory experiments, write-ups, coursework reports, project reports and presentations;
- Experimental, research and design skills will be assessed through laboratory experiments write-ups, coursework reports, project reports and presentations;
- Presentation skills through group presentations and poster presentations.

C. Thinking Skills

- C1. Apply appropriate quantitative mathematical, scientific and engineering tools to the analysis of problems;
- C2. Analyze and solve engineering problems;
- C3. Design a Biomedical Engineering system, component or process to meet a need;
- C4. Integrate knowledge and understanding of other scientific, mathematical, computational or engineering disciplines in order to support their engineering specialization.

Teaching and Learning Methods

- External lectures from industry or clinicians;
- Feedback given to students during tutorials;
- Small group and large group tutorial sessions;
- Question and answer sessions during lectures or staff Office Hours;
- Guided reading of texts, journal articles etc., for individual and group projects;
- Completion of web-based exercises or computer based laboratory sessions;

Assessment methods

- Individual written project report(s) of both individual and group projects;
- Group written project report(s) of group projects;
- Interview of group project manager and assessment of group project minutes;
- Poster presentation of group project work;
- Practical skills will be assessed through laboratory experiments, write-ups, coursework reports, project reports and presentations;
- Experimental, research and design skills will be assessed through laboratory experiments write-ups, coursework reports, project reports and presentations;
- Presentation skills through group presentations and poster presentations.
- D. General and Transferable Skills (other skills relevant to employability and personal development)
- D1. Apply in depth problem solving and analytical thinking to a diverse range of problems;
- D2. Use appropriate multi-disciplinary skills to solve Biomedical Engineering problems, combining the biological and engineering knowledge gained through the degree;
- D3. Demonstrate numeracy and literacy in written reports, project work and examinations;
- D4. Learn effectively for the purpose of continuing professional development and in a wider context throughout their career.

Teaching and Learning Methods

- Lectures where the students have some printed notes/handouts and may annotate, or expand these during a spoken lecture;
- Lecture material placed on web-pages or other e-learning environment;
- External lectures from industry or clinicians;
- Small group and large group tutorial sessions;
- Question and answer sessions during lectures or staff Office Hours;
- Guided reading of texts, journal articles etc., for individual and group projects;
- Completion of web-based exercises or computer based laboratory sessions.

Assessment Methods

- Group written project report(s) of group projects;
- Interview of group project manager and assessment of group project minutes;
- Poster presentation of group project work;
- Practical skills will be assessed through laboratory experiments, write-ups, coursework reports, project reports and presentations;
- Experimental, research and design skills will be assessed through laboratory experiments write-ups, coursework reports, project reports and presentations;
- Presentation skills through group presentations and poster presentations.

11. Program	Structure			
Level/Year	Course or Module Code	Course or Module Title	Credit Rating	12. Awards and Credits
First Year	BME121	Mathematics I	6	
First Year	BME131	Introduction to Biomedical Engineering	6	Bachelor Degree Requires (190) credits
First Year	BME132	Electronic Physics	4	
First Year	BME133	Engineering Mechanics	6	
First Year	BME122	Electrical Circuits	6	
First Year	BME123	Computer Science	4	
First Year	BME111	English	2	
First Year	BME112	Human Rights	2	
First Year	BME124	Engineering Drawing	4	
Second Year	BME221	Mathematics II	6	
Second Year	BME222	Anatomy I	6	
Second Year	BME231	Biomaterial Science	4	

Second Year	BME232	Mechanics of Materials and Vibrations	6
Second Year	BME233	Digital Techniques	4
Second Year	BME234	Network and Digital Lab.	2
Second Year	BME223	Biochemistry	6
Second Year	BME211	Arabic	2
Second Year	BME212	Freedom and Democracy	2
Third Year	BME321	Anatomy II	6
Third Year	BME322	Engineering and Numerical Analysis	4
Third Year	BME331	Microelectronics	4
Third Year	BME323	Computer Aided Design	4
Third Year	BME332	Bioelectromagnetics	4
Third Year	BME333	Biofluid and Thermodynamics	4
Third Year	BME324	Neourobiology and Biology	6
Third Year	BME341	Microwave, X-Rays and Gamma-Rays	4
Third Year	BME334	Electronic Circuit Lab.	2
Fourth Year	BME431	Artificial Limbs and Biotribology	4
Fourth Year	BME441	Machine Design	6
Fourth Year	BME442	Control System Design	6
Fourth Year	BME443	Integrated Optics and Laser	4
Fourth Year	BME432	Microprocessors and Microcomputers	4

Fourth	BME444	Signal Processing	6	
Year				
Fourth	BME445	Medical	4	
Year		Instrumentation and		
		System I		
Fourth	BME446	Medical	2	
Year		Measurements		
Fifth Year	BME541	Physiological Control and System	6	
Fifth Year	BME542	Clinical Engineering	4	
Fifth Year	BME543	Bio-digital Signal Processing	4	
Fifth Year	BME544	Medical Imaging	6	
Fifth Year	BME545	Biomedical Sensor	6	
Fifth Year	BME546	Medical Instrumentation and System II	6	
Fifth Year	BME547	Medical Engineering Lab.	2	
Fifth Year	BME548	Engineering Project	4	

13. Personal Development Planning

Personal Development Planning is developed across the degree, it is an integral part of the Biomedical Engineering Department, it is delivered and monitored through the personal tutor system. In specific modules the student will be encouraged to review and reflect upon progression and develop an awareness of the personal and professional needs, to reflect and develop skills relevant to the role of the biomedical engineer. Academic skills alone are clearly insufficient to meet the demands of the biomedical engineer. The development of additional interpersonal qualities is essential to enable students to initiate, direct and control events effectively. To help students develop these skills, many of the tutorial activities and assignment work will provide them with the opportunity for practical project work, the development of problem solving skills and discussion and critical appraisal. Students are required to make oral presentations at intervals throughout their course.

14. Admission criteria.

Applicants will normally be required to have passed the Baccalaureate Examination of the Secondary School / Scientific Branch according to the regulations stated by the Ministry of Higher Education and Scientific Research.

15. Key sources of information about the program

Ministry of Higher Education and Scientific Research

www.en.mohesr.gov.iq

University of Baghdad

www.en.uobaghdad.edu.iq

Al-Khwarizmi College of Engineering

www.kecbu.uobaghdad.edu.iq

Curriculum Skills Map																				
	pl	ease tick in the rel	evant	boxe	s whe	ere inc	divid	ual P	rogra	am Le	arnin	g Ou	tcome	es are	being	asses	sed			
										Progr	am L	earniı	ng Ou	itcome	es					
Year /	Course Code	Course Title	Core (C) Title or			edge ar tandin		Sì	ubjec	t-speci	fic ski	lls	7	Γhinkin	g Skill	S	Ski relev	eral and lls (or) (vant to er personal (Other ski nployab	ills ility
Level			Opti on (O)	A1	A2	A3	A4	B1	B2	В3	B4	В5	C1	C2	С3	C4	D1	D2	D3	D4
First	BME121	Mathematics I	C																	
Year	BME131	Introduction to Biomedical Engineering	С																	
	BME132	Electronic Physics	C																	
	BME133	Engineering Mechanics	С																	
	BME122	Electrical Circuits	C																	
	BME123	Computer Science	C																	
	BME111	English	C								V									
	BME112	Human Rights	C																	
	BME124	Engineering Drawing	С																	
Second	BME221	Mathematics II	C																	
Year	BME222	Anatomy I	C																	
	BME231	Biomaterial Science	С																	

	BME232	Mechanics of Materials and Vibrations	С									
	BME233	Digital Techniques	С									
	BME234	Network and Digital Lab.	С									
	BME223	Biochemistry	C									
	BME211	Arabic	C									
	BME212	Freedom and Democracy	С									
Third	BME321	Anatomy II	C									
Year	BME322	Engineering and Numerical Analysis	С									
	BME331	Microelectronics	C									
	BME323	Computer Aided Design	С									
	BME332	Bio- electromagnetics	С									
	BME333	Biofluid and Thermodynamics	С									
	BME324	Neurobiology and Biology	С									
	BME341	Microwave, X- Rays and Gamma- Rays	С									

	BME334	Electronic Circuit	С									
	DWIE554	Lab.	C									
Fourth Year	BME431	Artificial Limbs and Biotribology	C									
	BME441	Machine Design	C									
	BME442	Control System Design	C									
	BME443	Integrated Optics and Laser	С									
	BME432	Microprocessors and Microcomputers	C									
	BME444	Signal Processing	C									
	BME445	Medical Instrumentation and System I	С									
	BME446	Medical Measurements	C									
Fifth Year	BME541	Physiological Control and System	C									
	BME542	Clinical Engineering	C									
	BME543	Bio-digital Signal Processing	C									
	BME544	Medical Imaging	C									
	BME545	Biomedical Sensor	C									

BME546	Medical	C									
	Instrumentation and System II										
BME547	Medical Engineering Lab.	С									
BME548	Engineering Project	С									

TEMPLATE FOR COURSE SPECIFICATION

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the programme specification.

1. Teaching Institution	The Ministry of Higher Education
2. University Department/Centre	Baghdad University/Biomedical Engineering Department
3. Course title/code	Math-II/ BME111
4. Programme(s) to which it contributes	
5. Modes of Attendance offered	
6. Semester/Year	semester
7. Number of hours tuition (total)	62 hours
8. Date of production/revision of this specification	Y • 1 A_1 •

9. Aims of the Course

This course give the student the knowledge about the theory and application of math to solve engineering problems that related to all important calculations such as vector in space, polar function, function of two variables, differential equation, sequences and series and so on....make the student imagine and think with intelligent solution for practical problems in his work in future..

10. Learning Outcomes, Teaching ,Learning and Assessment Methode
A- Knowledge and Understanding A1. A2. A3. A4. A5.
B. Subject-specific skills B1. B2. B3. B4. √
Teaching and Learning Methods
Assessment methods Homework
C. Thinking Skills C1. C2. C3. C4.
Teaching and Learning Methods
 Question and answer sessions during lectures or staff Office Hours; Guided reading of texts, journal articles etc., for individual and group projects
Assessment methods
Individual written project report(s) of both individual and group projects

D.	General and	Transferable	Skills	(other	skills	relevant	to empl	oyability	and
	personal dev	relopment)		`			•		

D1.

D2.

D3.

D4.

Teaching and Learning Methods

- Lectures where the students have some printed notes/handouts and may annotate, or expand these during a spoken lecture;
- Question and answer sessions during lectures or staff Office Hours;
- Guided reading of texts, journal articles etc., for individual and group projects;

Assessment methods

11. Cou	rse Structu	ıre			
Week	Hours	ILOs	Unit/Module or Topic Title	Teaching Method	Assessment Method
1	٤		Polar coordinates: equivalent points and equivalent equation	Lecture on white board	Daily exam(paper& oral)
2	٤		Plotting curves, certain standard curve, the angle between tangent to curve and the radius vector	Lecture on white board	Daily exam(paper& oral
3	٤		Arc length, area of a plane region	Lecture on white board	Daily exam(paper& oral
4	٤		Asymptotes, domic section	Lecture on white board	Daily exam(paper& oral
5	٤		Hyperbolic functions: the functions and their inverse	Lecture on white board	Daily exam(paper& oral
6	٤		Relation to the logarithmic function, derivative and integration, the catenaries	Lecture on white board	Daily exam(paper& oral
7	٤		Exam	Lecture on white board	Daily exam(paper& oral
8	٤		Vectors: operations on vector in space, linear dependence	Lecture on white board	Daily exam(paper& oral
9	٤		The scalar and vector product, the triple product, lines and planes in space, vector – valued functions of single variable	Lecture on white board	Daily exam(paper& oral
10	٤		Limit and continuity, derivative	Lecture on white board	Daily exam(paper& oral
11	٤		The unit vector Ur and Uo velocity and acceleration	Lecture on white board	Daily exam(paper& oral
12	٤		The unit vector T, N, B in coordinates, and integration of a vector valued function	Lecture on white board	Daily exam(paper& oral
13	٤		Partial derivative: (functions of two or more independent variables, limit and continuity	Lecture on white board	Daily exam(paper& oral
14	٤		Partial derivatives, differentiable functions, total differentia, chain rule	Lecture on white board	Daily exam(paper& oral
15	٤		Jacobian, normal lines and tangent planes to surfaces, the gradient of a function	Lecture on white board	Daily exam(paper& oral

12. Infrastructure

Required reading:
CORE TEXTSCOURSE MATERIALS

- · OTHER

CALCULUS BY THOMAS Howard Advanced Math by Wiley

Special requirements (include for example workshops, periodicals, IT software, websites)	
Community-based facilities (include for example, guest Lectures, internship, field studies)	

13. Admissions	
Pre-requisites	
Minimum number of students	۲,
Maximum number of students	٤٠