TEMPLATE FOR PROGRAMME SPECIFICATION

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

PROGRAMME SPECIFICATION

This Programme Specification provides a concise summary of the main features of the programme and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It is supported by a specification for each course that contributes to the programme.

1. Teaching Institution	University of Baghdad / Alkhwarizmi College of Engineering
2. University Department/Centre	University of Baghdad / Al-Khwarizmi College of Engineering / Biomedical Engineering Dep.
3. Programme Title	B.Sc. Biomedical Engineering
4. Title of Final Award	B.Sc. Biomedical Engineering
5. Modes of Attendance offered	Full Time
6. Accreditation	ABET
7. Other external influences	None
8. Date of production/revision of this specification	2021

9. Aims of the Programme

This program aims to support the health sector in the country with specialized engineers who are needed to improve methods for the medical care patients and the fruitful usage of engineering in the field of medicine.

The program is dedicated to preparing the graduated engineers for the professional employment in areas such as the medical device industry, engineering consulting, biomechanics, biomedical imaging and signal processing, and biotechnology.

The professional Biomedical Engineer requires a sound knowledge of the engineering principles and other skills of engineering science in parallel with their application in the biomedical field. These engineering skills include modeling of

systems, mechanical analysis, electrical and electronic circuits, medical imaging, biomaterials and biomechanics. These skills will be brought together in the design projects through the degree and in the penultimate year group project and final year project. The Biomedical Engineering degree will allow the graduate to progress into a career in biomedical engineering or engineering or into the research field based on the knowledge developed throughout the degree. Furthermore the graduate will be equipped to develop their skills through continued personal development.

10. Learning Outcomes, Teaching, Learning and Assessment Methods

A. Knowledge and Understanding

- A1. Use their knowledge and understanding of the appropriate mathematical, scientific and computational tools that underpin Biomedical Engineering, to solve, in depth, analytical, design or theoretical problems in the field of Biomedical Engineering;
- A2. Apply their knowledge and understanding of physical and biological laws, mathematics and numerical analysis in order to model Biomedical Engineering and similar systems;
- A3. Draw on materials from a range of courses and wider reading in Biomedical Engineering principles and in Mechanical, Electrical and Biomedical Engineering and the Biological Sciences in order to solve problems in Biomedical Engineering including demonstrating depth and breadth to their learning;
- A4. Explain the role of Biomedical Engineers in society and the constraints within which their engineering judgment will be exercised.

B. Subject-specific skills

- B1. Plan and execute safely a series of experiments in both the engineering and biomedical context;
- B2. Design, from requirement, market need or specification, a biomedical engineering device implant or system, up to the preliminary design stage, and present this design via a series of poster, written and oral presentations from both group and individual work;
- B3. Use laboratory and workshop equipment to generate data, including both engineering and physiological measurements, with appropriate rigor;
- B4. Prepare technical drawings and technical reports.
- B5. Write computer programs and use computational tools and packages, selecting the appropriate "state of the art" tools to solve Biomedical Engineering problems.

Teaching and Learning Methods

Staff involved in the degree program utilize a wide range of teaching methods that they deem the most appropriate for a particular course. These include:

• Lectures where the students write information presented to them via slide show,

overhead or written by the lecturer;

- Lectures where the students have some printed notes/handouts and may annotate, or expand these during a spoken lecture;
- Lecture material placed on web-pages or other e-learning environment;
- Small group and large group tutorial sessions;
- Question and answer sessions during lectures or staff Office Hours;
- Laboratory sessions.

Assessment methods

Assessment Methods to be used are:

- Written examinations (Summative assessment);
- Oral presentations of individual and group work;
- Individual written project report(s) of both individual and group projects;
- Homework:
- Take home exams;
- Practical skills will be assessed through laboratory experiments, write-ups, coursework reports, project reports and presentations;
- Experimental, research and design skills will be assessed through laboratory experiments write-ups, coursework reports, project reports and presentations;
- Presentation skills through group presentations and poster presentations.

C. Thinking Skills

- C1. Apply appropriate quantitative mathematical, scientific and engineering tools to the analysis of problems;
- C2. Analyze and solve engineering problems;
- C3. Design a Biomedical Engineering system, component or process to meet a need;
- C4. Integrate knowledge and understanding of other scientific, mathematical, computational or engineering disciplines in order to support their engineering specialization.

Teaching and Learning Methods

- External lectures from industry or clinicians;
- Feedback given to students during tutorials;
- Small group and large group tutorial sessions;
- Question and answer sessions during lectures or staff Office Hours;
- Guided reading of texts, journal articles etc., for individual and group projects;
- Completion of web-based exercises or computer based laboratory sessions;

Assessment methods

- Individual written project report(s) of both individual and group projects;
- Group written project report(s) of group projects;

- Interview of group project manager and assessment of group project minutes;
- Poster presentation of group project work;
- Practical skills will be assessed through laboratory experiments, write-ups, coursework reports, project reports and presentations;
- Experimental, research and design skills will be assessed through laboratory experiments write-ups, coursework reports, project reports and presentations;
- Presentation skills through group presentations and poster presentations.
- D. General and Transferable Skills (other skills relevant to employability and personal development)
- D1. Apply in depth problem solving and analytical thinking to a diverse range of problems;
- D2. Use appropriate multi-disciplinary skills to solve Biomedical Engineering problems, combining the biological and engineering knowledge gained through the degree;
- D3. Demonstrate numeracy and literacy in written reports, project work and examinations;
- D4. Learn effectively for the purpose of continuing professional development and in a wider context throughout their career.

Teaching and Learning Methods

- Lectures where the students have some printed notes/handouts and may annotate, or expand these during a spoken lecture;
- Lecture material placed on web-pages or other e-learning environment;
- External lectures from industry or clinicians;
- Small group and large group tutorial sessions;
- Question and answer sessions during lectures or staff Office Hours;
- Guided reading of texts, journal articles etc., for individual and group projects;
- Completion of web-based exercises or computer based laboratory sessions.

Assessment Methods

- Group written project report(s) of group projects;
- Interview of group project manager and assessment of group project minutes;
- Poster presentation of group project work;
- Practical skills will be assessed through laboratory experiments, write-ups, coursework reports, project reports and presentations;
- Experimental, research and design skills will be assessed through laboratory experiments write-ups, coursework reports, project reports and presentations;
- Presentation skills through group presentations and poster presentations.

11. Program	me Structure			
Level/Year	Course or Module Code	Course or Module Title	12. Awards and Credits	
First Year				Daghalar Dagrag
First Year				Bachelor Degree Requires (x) credits
First Year				
Second Year	BME221	Mathematics II	6	
Second Year	BME222	Anatomy I	6	
Second Year	BME231	Biomaterial Science	4	
Second Year	BME232	Mechanics of Materials and Vibrations	6	
Second Year	BME233	Digital Techniques	4	
Second Year	BME234	Network and Digital Lab.	2	
Second Year	BME223	Biochemistry	6	

Second Year	BME211	Arabic	2	
Second Year	BME212	Freedom and Democracy	2	
Third Year	BME321	Anatomy II	6	
Third Year	BME322	Engineering and Numerical Analysis	4	
Third Year	BME331	Microelectronics	4	
Third Year	BME323	Computer Aided Design	4	
Third Year	BME332	Bioelectromagnetic s	4	
Third Year	BME333	Biofluid and Thermodynamics	4	
Third Year	BME324	Neourobiology and Biology	6	
Third Year	BME341	Microwave, X- Rays and Gamma- Rays	4	
Third Year	BME334	Electronic Circuit Lab.	2	
Fourth Year	BME431	Artificial Limbs and Biotribology	4	
Fourth Year	BME441	Machine Design	6	
Fourth Year	BME442	Control System Design	6	
Fourth Year	BME443	Integrated Optics and Laser	4	
Fourth Year	BME432	Microprocessors and Microcomputers	4	
Fourth Year	BME444	Signal Processing	6	
Fourth Year	BME445	Medical Instrumentation and System I	4	
Fourth	BME446	Medical	2	

Year		Measurements	
Fifth Year	BME541	Physiological Control and System	6
Fifth Year	BME542	Clinical Engineering	4
Fifth Year	BME543	Bio-digital Signal Processing	4
Fifth Year	BME544	Medical Imaging	6
Fifth Year	BME545	Biomedical Sensor	6
Fifth Year	BME546	Medical Instrumentation and System II	6
Fifth Year	BME547	Medical Engineering Lab.	2
Fifth Year	BME548	Engineering Project	4

13. Personal Development Planning

Personal Development Planning is developed across the degree, it is an integral part of the Biomedical Engineering Department, it is delivered and monitored through the personal tutor system. In specific modules the student will be encouraged to review and reflect upon progression and develop an awareness of the personal and professional needs, to reflect and develop skills relevant to the role of the biomedical engineer. Academic skills alone are clearly insufficient to meet the demands of the biomedical engineer. The development of additional interpersonal qualities is essential to enable students to initiate, direct and control events effectively. To help students develop these skills, many of the tutorial activities and assignment work will provide them with the opportunity for practical project work, the development of problem solving skills and discussion and critical appraisal. Students are required to make oral presentations at intervals throughout their course.

14. Admission criteria.

Applicants will normally be required to have passed the Baccalaureate Examination of the Secondary School / Scientific Branch according to the regulations stated by the Ministry of Higher Education and Scientific Research.

15. Key sources of information about the programme

Ministry of Higher Education and Scientific Research

www.en.mohesr.gov.iq

University of Baghdad

www.en.uobaghdad.edu.iq

Al-Khwarizmi College of Engineering

www.kecbu.uobaghdad.edu.iq

	Curriculum Skills Map																			
	please tick in the relevant boxes where individual Programme Learning Outcomes are being assessed																			
									P	rogra	mme	Learr	ning (Outcor	nes					
Year / Level	Course Code	Course Title	Core (C) Title or Option			edge aı tandin		S	ubjec	t-speci	fic ski	lls		Γhinkir	ıg Skill	S	Sk: relev	eral and ills (or) (vant to er personal (Other ski nployab	ills oility
			(O)	A1	A2	A3	A4	B1	B2	В3	B4	В5	C1	C2	С3	C4	D1	D2	D3	D4
First Year	BME322	Engineering and Numerical Analysis	С	V	1								1	V			1	V		

TEMPLATE FOR COURSE SPECIFICATION

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the programme specification.

1. Teaching Institution	University of Baghdad / Al-Khwarizmi College of Engineering
2. University Department/Centre	University of Baghdad / Al-Khwarizmi College of Engineering / Biomedical Engineering Dep.
3. Course title/code	Engineering and Numerical Analysis /BME322
4. Programme(s) to which it contributes	B.Sc. Biomedical Engineering
5. Modes of Attendance offered	Full Time
6. Semester/Year	semester
7. Number of hours tuition (total)	4 hr. per week
8. Date of production/revision of this specification	1/10/2018

9. Aims of the Course

By the end of this course the student will be able to:

- 1. Understand the background of Fourier series and transform, Laplace and z-transform, matrices .
- 2. Use some of the above in engineering applications such as solution of differential equations, analysis of electric circuits under transient and steady

- state conditions, solution of non linear equations and system of linear equations found in many engineering problems
- 3. Analysis the continuous and un-continuous signals

10. Learning Outcomes, Teaching ,Learning and Assessment Methode

A- Knowledge and Understanding

- A1. Use their knowledge and understanding of the appropriate mathematical, scientific and computational tools that underpin Biomedical Engineering, to solve, in depth, analytical, design or theoretical problems in the field of Biomedical Engineering;
- A2. Apply their knowledge and understanding of physical and biological laws, mathematics and numerical analysis in order to model Biomedical Engineering and similar systems;
 - B. Subject-specific skills

Teaching and Learning Methods

- Lectures where the students write information presented to them via slide show, overhead or written by the lecturer;
- Lectures where the students have some printed notes/handouts and may annotate, or expand these during a spoken lecture;
- Lecture material placed on web-pages or other e-learning environment.

Assessment methods

- Written examinations (Summative assessment);
- Homework.

C. Thinking Skills

- C1. Apply appropriate quantitative mathematical, scientific and engineering tools to the analysis of problems;
- C2. Analyze and solve engineering problems

Teaching and Learning Methods

- Feedback given to students during tutorials;
- Question and answer sessions during lectures or staff Office Hours;
- Guided reading of texts, journal articles etc., for individual and group projects

Assessment methods

• Experimental, research and design skills will be assessed through laboratory experiments write-ups, coursework reports, project reports and presentations;

- D. General and Transferable Skills (other skills relevant to employability and personal development)
- D1. Apply in depth problem solving and analytical thinking to a diverse range of problems;
- D2. Use appropriate multi-disciplinary skills to solve Biomedical Engineering problems, combining the biological and engineering knowledge gained through the degree

11. Course Structure

	be birdete				
Week	Hours	ILOs	Unit/Module or Topic Title	Teaching Method	Assessment Method
1	4		Fourier series : Series expansion & Euler coefficients ; even & odd functions; half range expansion; Complex exponential form of Fourier series		
2	4		Applications, Special functions: The Gamma function; Impulse function; The unit step function		
3	4		Fourier transform : periodic & aperiodic signals;		
4	4		Fourier transform of periodic signals and Exam		
5	4		Laplace transform : existence, definition of piecewise regular functions & functions of exponential order		
6	4		Properties of laplace transform		
7	4		Inverse laplace transform;		
8	4		The z-transform: Sampling theory & discrete functions; Residual formula;		
9	4		Properties of z-transform		
10	4		Inverse z-transform and Exam		
11	4		Matrices : Definitions & theorems Rank		
12	4		System of linear equations, Eigen values & Eigen vectors		
13	4		Analytic functions of a complex variable: Algebraic preliminaries & geometric representation of complex numbers;		
14	4		Functions of a complex variable; Properties of analytic functions; The logarithmic function;		
15	4		Exam		

12. Infrastructure						
Required reading: · CORE TEXTS · COURSE MATERIALS · OTHER	1. Advanced Engineering Mathematics by C. R. Wylie 2. Advanced Engineering Mathematics by Peter V. O'Neil 3. Advanced Engineering Mathematics by Erwin Kreysizg 4. Introduction to communication systems by Ferrell G. Stremler					
Special requirements (include for example workshops, periodicals, IT software, websites)						
Community-based facilities (include for example, guest Lectures, internship, field studies)						

13. Admissions					
Pre-requisites	Mathematics I ; BME221				
Minimum number of students	20				
Maximum number of students	30				